Yahoo奇摩 網頁搜尋

搜尋結果

  1. 其他人也問了

  2. 2023年11月9日 · 第三類半導體主要材料為碳化矽SiC 氮化鎵GaN兩種如果以市場來應用來看又可分為高頻通訊元件及功率元件兩大類資策會MIC於第36屆MIC FORUM...

  3. 2021年9月22日 · 第三代半導體是目前高科技領域最熱門的話題 5G、電動車、再生能源、工業 4.0 發展中扮演不可或缺的角色即使常聽到這些消息相信許多人對它仍一知半解好比第三代半導體到底是什麼為何台積電鴻海積極布局? 台灣為什麼必須跟上這一波商機? 對此本系列專題將用最淺顯易懂最全方位的角度帶你了解這個足以影響科技產業未來的關鍵技術。 從這裡可透過《Google 新聞》追蹤 TechNews. 科技新知,時時更新. 科技新報粉絲團 加入好友 訂閱免費電子報. 關鍵字: 5G , GaN , SiC , 第三代半導體 , 電動車. Post navigation.

  4. 2023年9月6日 · 第三代半導體過去因特斯拉率先使用碳化矽在電動車上引發需求與話題2023/3特斯拉又宣布要大減75%碳化矽用量讓氮化鎵躍上檯面分析之前 文章 已提過氮化鎵未來在電動車應用年複合成長率近100%,現在我們也要為大家持續追蹤市場訊息。 美國氮化鎵大廠EPC (宜普電源轉換)表示, 氮化鎵未來將會取代電壓650伏特以下MOFEST市場。 而MOSFET全球市場規模2022-2023年約已達百億美元,也就是說, 氮化鎵未來能取代的中低壓市場價值也有高達數十億美元。 接下來我們來了解: 1. 什麼是MOFEST與氮化鎵? 2. EPC (宜普)是誰? 說話有份量嗎? 3. 全球氮化鎵大廠市占情況,台廠與大廠的合作. 快速理解功率半導體與相關名詞.

  5. 2021年6月17日 · 財訊. 第3代半導體是目前高科技領域最熱門的話題不只中國想要這個技術從歐洲美國到台灣所有人都在快速結盟想在這個機會裡分一杯羹為什麼第三代半導體這麼火熱? 它的應用與商機在哪裡? 過去30年,台積電、聯電擅長製造的邏輯IC,基本上都是以矽做為材料。 但矽也有一些弱點,如果用門做比喻,用矽做的半導體,就像是用木頭做的木門,輕輕一拉就能打開(從絕緣變成導電)。 用第2代或第3代化合物半導體就像是鐵門,甚至金庫的大門,需要很大的力氣,要施加大的電壓,才能讓半導體材料打開大門,讓電子通過。 因此,要處理高電壓、高頻訊號,或是在訊號的轉換速度上,第3代半導體都優於傳統的矽。 目前,坊間所稱的第2代半導體,指的是砷化鎵、磷化銦這兩種半導體材料,「這是1980年代發展出來的技術。

    • 為什麼需要用到第三代寬能隙半導體(Wide Band Gap,Wbg)?
    • 什麼是能隙(Band Gap)?
    • 有哪些更佳的寬能隙材料?
    • 寬能隙材料運用在那些產品上?
    • 寬能隙材料開發生產階段,需進行那些驗證分析?

    由於近年地球暖化與碳排放衍生的環保問題日益嚴重,人類以節能、減碳、愛護地球為共同的首要發展方向,石化能源必須逐步減少並快速導入綠能節電的應用,因此在日常生活用品中也逐步以高能效、低能耗為目標。 舉例而言,聯合國在氣候變化大會巴黎協議中的目標──全球暖化幅度需保持在 2℃ 以內。以目前的經濟發展趨勢預估,即便 2050 年的升溫保持在 2℃ 內,CO2 排放量仍將提高 21%,且必須另外取得高達 50% 的電力因應各種人類活動。因此,大幅提升與改善現有的能源,已是大勢所趨。 半導體原料最大宗,主要以第一代的「矽(Si)」晶圓的生產製造為主。然而在現有以「矽(Si)」基礎的產品,因材料的物理特性已達極限,無法再提升電量、降低熱損、提升速度,因此需朝向其他更能發揮電子傳輸效率與低能耗的材料演進,而...

    我們先來了解一下何謂「能隙 (Band Gap)」? 基本上要用量子物理的理論來簡單說明,在「能帶(Band)」的劃分主要為低能帶區的「價電能帶」 (Valence Band,VB),與高能帶區的「導電能帶 (Conduction Band,CB) 」兩種,在 VB 與 CB 之間即是一個所謂的能帶間隙(Band Gap,BG),簡稱「能隙」(圖一)。 ▲ 圖一、半導體能帶與能隙示意圖。(Source:宜特科技繪製) 金屬材料能夠導電,主要是因為電子都位於高能的 CB 區域內,電子可自由流動;而半導體材料在常溫下主要電子是位於低能的 VB 區域內無法流動,當受熱或是獲得足夠大於「能隙(BG)」的能量時,其 VB 內電子即可克服此能障,躍遷至 CB 而形成了導電特性。 因此在積體電路中的電晶體...

    那麼有哪些更佳的寬能隙材料呢?如 Si 與 C 的化合物碳化矽(SiC),相關的材料能隙均可大於 3.0eV;另外,Ga 與 N 或 O 的化合物氮化鎵(GaN)或氧化鎵(Ga2O3)也分別高達 3.4eV 與 4.9eV,而鑽石(Diamond)更高達 5.4eV(表一)。 ▲ 表一、半導體材料的物性比較。(Source:宜特科技) 其中氮化鎵(GaN)或氧化鎵(Ga2O3),雖然分別在 LED 照明或是紫外光的濾光光源應用已經一段時間,但受限於這類半導體材料的特性在生產製作上挑戰性仍然是高的。 例如,要製作 SiC 的單晶晶棒,相較 Si 晶棒的生產困難且時間緩慢很多,以及 GaN 與 Si 晶圓的晶格不匹配易生成差排缺陷(dislocation defect)等問題必須克服,導致長久以...

    不過,近年來的國際知名大廠意法半導體(ST Microelectronics)、英飛凌(Infineon)、羅姆(Rohm)等均有相當大的突破。如 GaN 在以 Si 或 SiC 為基板的產品已陸續發表,目前市售的快速充電器採用的即是 GaN on Si 材料製作的高功率(如 60 瓦以上)產品,其除了功率提升外,也因為溫度與熱效應可大幅降低,使得元件可大幅縮小,充電器體積也更加玲瓏小巧,未來這在行動裝置、筆電等快充電源的應用更是潛力無窮。 現行以矽基材料為主的高功率產品多以絕緣閘雙極電晶體(IGBT)或金氧半場效電晶體(MOSFET)為主,如圖二,可以看到各種功率元件和模組與相關材料應用的範圍,雖然在傳統 IGBT 高功率模組大約能應用至一百千瓦(100kW)以上,但速度卻無法提升至一百萬...

    宜特觀察,晶圓代工廠與功率 IDM 廠商也都持續不斷地努力研究與開發。不過,新半導體材料,在初期開發中,總是會有許多需進行研發驗證的狀況,近年,宜特就協助多家 WBG 產業的開發與生產驗證。 比如磊晶製程相關的結構或缺陷分析,就可以藉由宜特科技的雙束聚焦離子束(Dual beam FIB)製備剖面樣品並進行尺寸量測或成分分析(EDS),亦可搭配穿透式電子顯微鏡(TEM)進行奈米級的缺陷觀察。 而相關擴散區域的分析可經由樣品研磨製備剖面後,進行掃描式電子顯微鏡(SEM)觀察以及掛載在原子力顯微鏡 (AFM)上的偵測模組-掃描式電容顯微鏡(SCM)判別摻雜區域的型態與尺寸量測,如圖三為 SiC 的元件分析擴散區摻雜的型態,先用 SEM 觀察井區(Well)的分布位置,再經由 SCM 判斷上層分別...

  6. 2020年1月10日 · 半導體材料歷經 3 個發展階段第一代是矽Si)、Ge等基礎功能材料第二代開始進入由 2 種以上元素組成的化合物半導體材料以砷化鎵GaAs)、磷化銦InP等為代表第三代則是氮化鎵GaN)、碳化矽SiC等寬頻化合物半導體材料。 目前全球絕大多數半導體元件,都是以矽作為基礎功能材料的矽基半導體,不過,在高電壓功率元件應用上,矽基元件因導通電阻過大,往往造成電能大量損耗,且在高頻工作環境下,矽元件的切換頻率相對較低,性能不如寬頻化合物半導體材料。 矽基半導體受限矽材料的物理性質,而氮化鎵、碳化矽則因導通電阻遠小於矽基材料,導通損失、切換損失降低,可帶來更高的能源轉換效率。

  7. 2021年9月22日 · 搞懂第三代半導體與前兩代的差異關鍵不同世代半導體的消長與共存 | TechNews 科技新報. 作者 Evan | 發布日期 2021 年 09 月 22 日 9:15 | 分類 IC 設計 , 封裝測試 , 晶圓. 分享. 隨著全球進入 IoT、5G、綠能、電動車時代,能徹底展現耐高壓、高溫、高頻能耐,並滿足當前主流應用對高能源轉換效率要求的寬能隙(Wide Band Gap,WBG)半導體開始成為市場寵兒,半導體材料於焉揭開第三代半導體新紀元的序幕。 從這裡可透過《Google 新聞》追蹤 TechNews. 科技新知,時時更新. 科技新報粉絲團 加入好友 訂閱免費電子報.

  1. 其他人也搜尋了