Yahoo奇摩 網頁搜尋

搜尋結果

  1. 三極體,全稱應為半導體三極體,也稱雙極型電晶體、晶體三極體,是一種控制電流的半導體器件其作用是把微弱信號放大成幅度值較大的電信號, 也用作無觸點開關。 晶體三極體,是半導體基本元器件之一,具有電流放大作用,是電子電路的核心元件。 三極體是在一塊半導體基片上製作兩個相距很近的PN結,兩個PN結把整塊半導體分成三部分,中間部分是基區,兩側部分是發射區和集電區,排列方式有PNP和NPN兩種。 兩種三極體的原理圖符號. 三極體有截止、放大、飽和三種工作狀態。 放大狀態主要應用於模擬電路中,且用法和計算方法也比較複雜,我們暫時用不到。 而數字電路主要使用的是三極體的開關特性,只用到了截止與飽和兩種狀態,所以我們也只來講解這兩種用法。

    • 概觀
    • 基本介紹
    • 工作原理
    • 電路解析
    • 常用
    • 實驗方法
    • 元件作用

    NPN一般指本詞條

    NPN型三極體,由三塊半導體構成,其中兩塊N型和一塊P型半導體組成,P型半導體在中間,兩塊N型半導體在兩側。三極體是電子電路中最重要的器件,它最主要的功能是電流 放大和開關作用。

    半導體三極體也稱為晶體三極體,可以說它是電子電路中最重要的器件。它最主要的功能是電流放大和開關作用。 三極體顧名思義具有三個電極。二極體是由一個PN結構成的,而三極體由兩個PN結構成,共用的一個電極成為三極體的基極(用字母B表示——B取自英文Base,基本(的)、基礎(的)),其他的兩個電極分別稱為集電極(用字母C表示——C取自英文Collector,收集)和發射極(用字母E表示—— E取自英文Emitter,發射)。

    三極體最基本的作用是放大作用,它可以把微弱的電信號變成一定強度的信號,當然這種轉換仍然遵循能量守恆,它只是把電源的能量轉換成信號的能量。三極體有一個重要參數就是電流放大係數β。當三極體的基極上加一個微小的電流時,在集電極上可以得到一個是注入電流β倍的電流,即集電極電流。集電極電流隨基極電流的變化而變化,並且基極電流很小的變化可以引起集電極電流很大的變化,這就是三極體的放大作用。

    •中文名:NPN型三極體

    •外文名:NPN type triode

    •組成:三塊半導體構成

    •作用:用來控制電流的大小

    三極體是一種控制元件,主要用來控制電流的大小,以共發射極接法為例(信號從基極輸入,從集電極輸出,發射極接地),當基極電壓UB有一個微小的變化時,基極電流IB也會隨之有一小的變化,受基極電流IB的控制,集電極電流IC會有一個很大的變化,基極電流IB越大,集電極電流IC也越大,反之,基極電流越小,集電極電流也越小,即基極電流控制集電極電流的變化。但是集電極電流的變化比基極電流的變化大得多,這就是三極體的放大作用。IC 的變化量與IB變化量之比叫做三極體的放大倍數β(β=ΔIC/ΔIB, Δ表示變化量。),三極體的放大倍數β一般在幾十到幾百倍。

    三極體在放大信號時,首先要進入導通狀態,即要先建立合適的靜態工作點,也叫 建立偏置 ,否則會放大失真。

    如上圖所示,我們把從基極B流至發射極E的電流叫做基極電流Ib;把從集電極C流至發射極E的電流叫做集電極電流Ic。這兩個電流的方向都是流出發射極的,所以發射極E上就用了一個箭頭來表示電流的方向。三極體的放大作用就是:集電極電流受基極電流的控制(假設電源能夠提供給集電極足夠大的電流的話),並且基極電流很小的變化,會引起集電極電流很大的變化,且變化滿足一定的比例關係:集電極電流的變化量是基極電流變化量的β倍,即電流變化被放大了β倍,所以我們把β叫做三極體的放大倍數(β一般遠大於1,例如幾十,幾百)。如果我們將一個變化的小信號加到基極跟發射極之間,這就會引起基極電流Ib的變化,Ib的變化被放大後,導致了Ic很大的變化。如果集電極電流Ic是流過一個電阻R的,那么根據電壓計算公式U=R*I可以算得,這電阻上電壓就會發生很大的變化。我們將這個電阻上的電壓取出來,就得到了放大後的電壓信號了。

    三極體在實際的放大電路中使用時,還需要加合適的偏置電路。這有幾個原因。首先是由於三極體BE結的非線性(相當於一個二極體),基極電流必須在輸入電壓大到一定程度後才能產生(對於矽管,常取0.7V)。當基極與發射極之間的電壓小於0.7V時,基極電流就可以認為是0。但實際中要放大的信號往往遠比0.7V要小,如果不加偏置的話,這么小的信號就不足以引起基極電流的改變(因為小於0.7V時,基極電流都是0)。如果我們事先在三極體的基極上加上一個合適的電流(叫做偏置電流,上圖中那個電阻Rb就是用來提供這個電流的,所以它被叫做基極偏置電阻),那么當一個小信號跟這個偏置電流疊加在一起時,小信號就會導致基極電流的變化,而基極電流的變化,就會被放大並在集電極上輸出。另一個原因就是輸出信號範圍的要求,如果沒有加偏置,那么只有對那些增加的信號放大,而對減小的信號無效(因為沒有偏置時集電極電流為0,不能再減小了)。而加上偏置,事先讓集電極有一定的電流,當輸入的基極電流變小時,集電極電流就可以減小;當輸入的基極電流增大時,集電極電流就增大。這樣減小的信號和增大的信號都可以被放大了。

    下面說說三極體的飽和情況。像上面那樣的圖,因為受到電阻Rc的限制(Rc是固定值,那么最大電流為U/Rc,其中U為電源電壓),集電極電流是不能無限增加下去的。當基極電流的增大,不能使集電極電流繼續增大時,三極體就進入了飽和狀態。一般判斷三極體是否飽和的準則是:Ib*β〉Ic。進入飽和狀態之後,三極體的集電極跟發射極之間的電壓將很小,可以理解為一個開關閉合了。這樣我們就可以拿三極體來當作開關使用:當基極電流為0時,三極體集電極電流為0(這叫做三極體截止),相當於開關斷開;當基極電流很大,以至於三極體飽和時,相當於開關閉合。如果三極體主要工作在截止和飽和狀態,那么這樣的三極體我們一般把它叫做開關管。

    如果我們在上面這個圖中,將電阻Rc換成一個燈泡,那么當基極電流為0時,集電極電流為0,燈泡滅。如果基極電流比較大時(大於流過燈泡的電流除以三極體的放大倍數β),三極體就飽和,相當於開關閉合,燈泡就亮了。由於控制電流只需要比燈泡電流的β分之一大一點就行了,所以就可以用一個小電流來控制一個大電流的通斷。如果基極電流從0慢慢增加,那么燈泡的亮度也會隨著增加(在三極體未飽和之前)。

    但是在實際使用中要注意,在開關電路中,飽和狀態若在深度飽和時會影響其開關速度,飽和電路在基極電流乘放大倍數等於或稍大於集電極電流時是淺度飽和,遠大於集電極電流時是深度飽和。因此我們只需要控制其工作在淺度飽和工作狀態就可以提高其轉換速度。

    對於PNP型三極體,分析方法類似,不同的地方就是電流方向跟NPN的剛好相反,因此發射極上面那個箭頭方向也反了過來——變成朝里的了。

    電子製作中常用的三極體有9 0× ×系列,包括低頻小功率矽管9013(NPN)、9012(PNP),低噪聲管9014(NPN),高頻小功率管9018(NPN)等。它們的型號一般都標在塑殼上,而樣子都一樣,都是TO-92標準封裝。在老式的電子產品中還能見到3DG6(低頻小功率矽管)、3AX31 (低頻小功率鍺管) 等,它們的型號也都印在金屬的外殼上。

    第一部分的3表示為三極體。 第二部分表示器件的材料和結構,A: PNP型鍺材料 B: NPN型鍺材料 C: PNP型矽材料 D: NPN型矽材料 第三部分表示功能,U:光電管 K:開關管 X:低頻小功率管 G:高頻小功率管 D:低頻大功率管 A:高頻大功率管。另外,3DJ型為場效應管,BT打頭的表示半導體特殊元件。

    按接線圖表5接好電路,注意三極體e、b、c三個管腳及發光二極體的極性不要接錯。R1是基極的偏置電阻,當用紅線(W)接到14號彈簧或8號彈簧時都可向基極加上偏置電流使三極體導通,(即c、e極間相當於短路),發光二極體D導通發光。當紅線(W)接到20號彈簧時,由於20號彈簧的電位低,三極體不導通(即c、e間相當於斷路)發光二極體D不發光。

    電阻R1基極偏置用,電阻R2有限流作用,也是三極體集電極的負載電阻。發光二極體D指示作用,三極體T開關作用,電池E供電。

    三極體可以看成是2個PN結。測試其好壞只要測其PN結是否正常就行。其方法是,用電阻檔測b,c極和b,e極的正反電阻,相差幾十倍以上就是正常的。

    估算NPN型三極體的電流放大係數的簡單方法:

    黑表筆接c極,紅表筆接e極,在c,b極間接一個50-200K的電阻,查看錶針的擺動情況,擺動越大,β值越高。

  2. 2017年12月21日 · 電晶體也稱為雙極性接面電晶體 (BJT),是一種由電流驅動的半導體元件可用於控制電流流動其中基極引線中的少量電流可控制集極和射極之間較大的電流。 電晶體可以用來放大微弱的訊號、當作振盪器或開關。 通常,這些電晶體元件是以矽晶體製成,其中的 N 與 P 型半導體層互相堆疊。 請參閱以下圖 1。 圖 1:圖 1a 為 2N3904 TO-92 的剖面圖,顯示接至矽晶的 E - 射極、B - 基極以及 C - 集極引線。 圖 1b 取自 1958 年 5 月號 Radio-Electronics 雜誌2,顯示了 N 和 P 型切面及其排列情形 (當時使用鍺材質)。 電晶體採用全密閉結構,封裝在有三根引線的塑膠或金屬圓柱體內 (圖 2)。 圖 2:幾種常見的封裝類型及其尺寸比較。

    • John Leduc
  3. 雙極性電晶體由三部分 摻雜程度 不同的半導體製成,電晶體中的 電荷 流動主要是由於載子在PN接面處的 擴散作用 和 漂移運動 。 以NPN電晶體為例,按照設計,高摻雜的射極區域的電子,通過擴散作用運動到基極。 在基極區域,電洞為多數載子,而電子少數載子。 由於基極區域很薄,這些電子又通過漂移運動到達集極,從而形成集極電流,因此雙極性電晶體被歸到少數載子設備。 [4]:30 [5]:35. 雙極性電晶體能夠放大訊號,並且具有較好的功率控制、高速工作以及耐久能力, [6]:48 ,所以它常被用來構成 放大器電路 ,或驅動 揚聲器 、 電動機 等設備,並被廣泛地應用於 航太工程 、 醫療器械 和 機器人 等應用產品中。 [6]:48. 通斷(傳遞訊號)時的雙極電晶體表現出一些延遲特性。

  4. 2023年12月29日 · 電晶體也被稱為半導體三極體因為它標誌著真空管的終結就像接面型二極體取代了真空二極體一樣。 另一個常見名稱則是BJT,即雙極接面型電晶體的縮寫。 雙極屬性是指半導體中的導電性 (由電子和空穴決定)。 在 圖3 中,我們可以看到PNP電晶體的電路符號,其呈現方式主要是為了突顯與 圖1 中圖表的關係。 同樣地, 圖4 顯示了NPN電晶體的符號。 圖3:PNP電晶體的電路符號。 圖4:NPN電晶體的電路符號。 開路電晶體. 讓我們以PNP電晶體為例 (結果也可以馬上推廣到NPN電晶體)。 在開路條件下,我們預期會出現與單接面類似的行為,即存在接觸電勢 (請參閱之前的教程),這實際上是一個阻障,其目的是阻止空穴從發射極向基極擴散。

  5. 其他人也問了

  6. 雙極性電晶體由三部分摻雜程度不同的半導體製成,電晶體中的電荷流動主要是由於載子在PN接面處的擴散作用和漂移運動。 以NPN電晶體為例,按照設計,高摻雜的射極區域的電子,通過擴散作用運動到基極接面。 在基極接面區域,電洞為多數載子,而電子少數載子。 由於基極接面區域很薄,這些電子又通過漂移運動到達集極,從而形成集極電流,因此雙極性電晶體被歸到少數載子設備。 雙極性電晶體能夠放大訊號,並且具有較好的功率控制、高速工作以及耐久能力,所以它常被用來構成放大器電路,或驅動揚聲器、電動機等設備,並被廣泛地套用於航空太空工程、醫療器械和機器人等套用產品中. 發展及套用. 1947年12月,貝爾實驗室的約翰·巴丁、沃爾特·布喇頓在威廉·肖克利的指導下共同發明了點接觸形式的雙極性電晶體

  7. 將電子與電洞的作用互換則PNP型電晶体與NPN型電晶体的工作原理完全相同。 同時我們也 由此知道流入電晶体的電流等於流出電晶体的電流,即 電晶體的結構很像二極体,不過比二極体多出了一個 接合面。 如圖3-15(a)所示,將二層N型半導体,中間 夾以一層很薄的P型半導体,即成NPN型電晶體;或 將二層P型半導体,中間夾以一層很薄的N型半導体, 即成PNP型電晶體。 將電晶體的三層晶片都分別列出接線成為電極,中間 一片稱為基極(base,B),另兩極分別稱為射極(emitter,E) 及集極(collector,C)。 射極能發射多數載体,基極可控制流向集極之多數載 体的數量。