Yahoo奇摩 網頁搜尋

搜尋結果

  1. 2018年5月28日 · 這些應用都仰賴完美石墨烯之特性,目前常見的石墨烯製備方法,可大略分為兩類:一種是從天然石墨中剝離出單層石墨烯,然後再組裝成薄膜的剝離法。

    • 投稿須知

      物理雙月刊投稿須知 很想將自己的物理知識分享出去嗎?覺得 ...

    • 認識我們

      物理雙月刊之前身為「中華民國物理學會通訊」,主要目的在 ...

    • 概觀
    • 基本介紹
    • 研究歷史
    • 理化性質
    • 製備方法
    • 主要分類
    • 主要套用
    • 發展前景

    石墨烯(Graphene)是一種由碳原子以sp2雜化軌道組成六角型呈蜂巢晶格的二維碳納米材料。

    石墨烯具有優異的光學、電學、力學特性,在材料學、微納加工、能源、生物醫學和藥物傳遞等方面具有重要的套用前景,被認為是一種未來革命性的材料。英國曼徹斯特大學物理學家安德烈·蓋姆和康斯坦丁·諾沃肖洛夫,用微機械剝離法成功從石墨中分離出石墨烯,因此共同獲得2010年諾貝爾物理學獎。石墨烯常見的粉體生產的方法為機械剝離法、氧化還原法、SiC外延生長法,薄膜生產方法為化學氣相沉積法(CVD)。

    •中文名:石墨烯

    •英文名:Graphene

    •套用領域:物理、材料、電子信息、計算機等

    •載流子遷移率:15000cm2/(V·s)(室溫)

    •導熱係數:5300W/mK(單層)

    •理論楊氏模量:1.0TPa

    實際上石墨烯本來就存在於自然界,只是難以剝離出單層結構。石墨烯一層層疊起來就是石墨,厚1毫米的石墨大約包含300萬層石墨烯。鉛筆在紙上輕輕划過,留下的痕跡就可能是幾層甚至僅僅一層石墨烯。

    2004年,英國曼徹斯特大學的兩位科學家安德烈·蓋姆(Andre Geim)和康斯坦丁·諾沃消洛夫(Konstantin Novoselov)發現他們能用一種非常簡單的方法得到越來越薄的石墨薄片。他們從高定向熱解石墨中剝離出石墨片,然後將薄片的兩面粘在一種特殊的膠帶上,撕開膠帶,就能把石墨片一分為二。不斷地這樣操作,於是薄片越來越薄,最後,他們得到了僅由一層碳原子構成的薄片,這就是石墨烯。

    這以後,製備石墨烯的新方法層出不窮。2009年,安德烈·蓋姆和康斯坦丁·諾沃肖洛夫在單層和雙層石墨烯體系中分別發現了整數量子霍爾效應及常溫條件下的量子霍爾效應,他們也因此獲得2010年度諾貝爾物理學獎。在發現石墨烯以前,大多數物理學家認為,熱力學漲落不允許任何二維晶體在有限溫度下存在。所以,它的發現立即震撼了凝聚體物理學學術界。雖然理論和實驗界都認為完美的二維結構無法在非絕對零度穩定存在,但是單層石墨烯能夠在實驗中被製備出來。

    2018年3月31日,中國首條全自動量產石墨烯有機太陽能光電子器件生產線在山東菏澤啟動,該項目主要生產可在弱光下發電的石墨烯有機太陽能電池(下稱石墨烯OPV),破解了套用局限、對角度敏感、不易造型這三大太陽能發電難題。

    物理性質

    內部結構 石墨烯內部碳原子的排列方式與石墨單原子層一樣以sp2雜化軌道成鍵,並有如下的特點:碳原子有4個價電子,其中3個電子生成sp2鍵,即每個碳原子都貢獻一個位於pz軌道上的未成鍵電子,近鄰原子的pz軌道與平面成垂直方向可形成π鍵,新形成的π鍵呈半填滿狀態。研究證實,石墨烯中碳原子的配位數為3,每兩個相鄰碳原子間的鍵長為1.42×10-10米,鍵與鍵之間的夾角為120°。除了σ鍵與其他碳原子連結成六角環的蜂窩式層狀結構外,每個碳原子的垂直於層平面的pz軌道可以形成貫穿全層的多原子的大π鍵(與苯環類似),因而具有優良的導電和光學性能。石墨烯結構圖單層 力學特性 石墨烯是已知強度最高的材料之一,同時還具有很好的韌性,且可以彎曲,石墨烯的理論楊氏模量達1.0TPa,固有的拉伸強度為130GPa。而利用氫等離子改性的還原石墨烯也具有非常好的強度,平均模量可大0.25TPa。由石墨烯薄片組成的石墨紙擁有很多的孔,因而石墨紙顯得很脆,然而,經氧化得到功能化石墨烯,再由功能化石墨烯做成石墨紙則會異常堅固強韌。 電子效應 石墨烯在室溫下的載流子遷移率約為15000cm2/(V·s),這一數值超過了矽材料的10倍,是目前已知載流子遷移率最高的物質銻化銦(InSb)的兩倍以上。在某些特定條件下如低溫下,石墨烯的載流子遷移率甚至可高達250000cm2/(V·s)。與很多材料不一樣,石墨烯的電子遷移率受溫度變化的影響較小,50~500K之間的任何溫度下,單層石墨烯的電子遷移率都在15000cm2/(V·s)左右。 另外,石墨烯中電子載體和空穴載流子的半整數量子霍爾效應可以通過電場作用改變化學勢而被觀察到,而科學家在室溫條件下就觀察到了石墨烯的這種量子霍爾效應。石墨烯中的載流子遵循一種特殊的量子隧道效應,在碰到雜質時不會產生背散射,這是石墨烯局域超強導電性以及很高的載流子遷移率的原因。石墨烯中的電子和光子均沒有靜止質量,他們的速度是和動能沒有關係的常數。 石墨烯是一種零距離半導體,因為它的傳導和價帶在狄拉克點相遇。在狄拉克點的六個位置動量空間的邊緣布里淵區分為兩組等效的三份。相比之下,傳統半導體的主要點通常為Γ,動量為零。 熱性能 石墨烯具有非常好的熱傳導性能。純的無缺陷的單層石墨烯的導熱係數高達5300W/mK,是目前為止導熱係數最高的碳材料,高於單壁碳納米管(3500W/mK)和多壁碳納米管(3000W/mK)。當它作為載體時,導熱係數也可達600W/mK。此外,石墨烯的彈道熱導率可以使單位圓周和長度的碳納米管的彈道熱導率的下限下移。 光學特性 石墨烯具有非常良好的光學特性,在較寬波長範圍內吸收率約為2.3%,看上去幾乎是透明的。在幾層石墨烯厚度範圍內,厚度每增加一層,吸收率增加2.3%。大面積的石墨烯薄膜同樣具有優異的光學特性,且其光學特性隨石墨烯厚度的改變而發生變化。這是單層石墨烯所具有的不尋常低能電子結構。室溫下對雙柵極雙層石墨烯場效應電晶體施加電壓,石墨烯的帶隙可在0~0.25eV間調整。施加磁場,石墨烯納米帶的光學回響可調諧至太赫茲範圍。 當入射光的強度超過某一臨界值時,石墨烯對其的吸收會達到飽和。這些特性可以使得石墨烯可以用來做被動鎖模雷射器。這種獨特的吸收可能成為飽和時輸入光強超過一個閾值,這稱為飽和影響,石墨烯可飽和容易下可見強有力的激勵近紅外地區,由於環球光學吸收和零帶隙。由於這種特殊性質,石墨烯具有廣泛套用在超快光子學。石墨烯/氧化石墨烯層的光學回響可以調諧電。更密集的雷射照明下,石墨烯可能擁有一個非線性相移的光學非線性克爾效應。 溶解性:在非極性溶劑中表現出良好的溶解性,具有超疏水性和超親油性。 熔點:科學家在2015年的研究中表示約4125K,有其他研究表明熔點可能在5000K左右。 其他性質:可以吸附和脫附各種原子和分子。

    化學性質

    石墨烯的化學性質與石墨類似,石墨烯可以吸附並脫附各種原子和分子。當這些原子或分子作為給體或受體時可以改變石墨烯載流子的濃度,而石墨烯本身卻可以保持很好的導電性。但當吸附其他物質時,如H+和OH-時,會產生一些衍生物,使石墨烯的導電性變差,但並沒有產生新的化合物。因此,可以利用石墨來推測石墨烯的性質。例如石墨烷的生成就是在二維石墨烯的基礎上,每個碳原子多加上一個氫原子,從而使石墨烯中sp2碳原子變成sp3雜化。可以在實驗室中通過化學改性的石墨製備的石墨烯的可溶性片段。 化合物 氧化石墨烯(grapheneoxide,GO):一種通過氧化石墨得到的層狀材料。體相石墨經發煙濃酸溶液處理後,石墨烯層被氧化成親水的石墨烯氧化物,石墨層間距由氧化前的3.35Å增加到7~10Å,經加熱或在水中超聲剝離過程很容易形成分離的石墨烯氧化物片層結構。XPS、紅外光譜(IR)、固體核磁共振譜(NMR)等表徵結果顯示石墨烯氧化物含有大量的含氧官能團,包括羥基、環氧官能團、羰基、羧基等。羥基和環氧官能團主要位於石墨的基面上,而羰基和羧基則處在石墨烯的邊緣處。 石墨烷(graphane):可通過石墨烯與氫氣反應得到,是一種飽和的碳氫化合物,具有分子式(CH)n,其中所有的碳是sp3雜化並形成六角網路結構,氫原子以交替形式從石墨烯平面的兩端與碳成鍵,石墨烷表現出半導體性質,具有直接帶隙。 氮摻雜石墨烯或氮化碳(carbonnitride):在石墨烯晶格中引入氮原子後變成氮摻雜的石墨烯,生成的氮摻雜石墨烯表現出較純石墨烯更多優異的性能,呈無序、透明、褶皺的薄紗狀,部分薄片層疊在一起,形成多層結構,顯示出較高的比電容和良好的循環壽命。 生物相容性:羧基離子的植入可使石墨烯材料表面具有活性功能團,從而大幅度提高材料的細胞和生物反應活性。石墨烯呈薄紗狀與碳納米管的管狀相比,更適合於生物材料方面的研究。並且石墨烯的邊緣與碳納米管相比,更長,更易於被摻雜以及化學改性,更易於接受功能團。 氧化性:可與活潑金屬反應。 還原性:可在空氣中或是被氧化性酸氧化,通過該方法可以將石墨烯裁成小碎片。石墨烯氧化物是通過石墨氧化得到的層狀材料,經加熱或在水中超聲剝離過程很容易形成分離的石墨烯氧化物片層結構。 加成反應:利用石墨烯上的雙鍵,可以通過加成反應,加入需要的基團。 穩定性:石墨烯的結構非常穩定,碳碳鍵(carbon-carbon bond)僅為1.42。石墨烯內部的碳原子之間的連線很柔韌,當施加外力於石墨烯時,碳原子面會彎曲變形,使得碳原子不必重新排列來適應外力,從而保持結構穩定。這種穩定的晶格結構使石墨烯具有優秀的導熱性。另外,石墨烯中的電子在軌道中移動時,不會因晶格缺陷或引入外來原子而發生散射。由於原子間作用力十分強,在常溫下,即使周圍碳原子發生擠撞,石墨烯內部電子受到的干擾也非常小。同時,石墨烯有芳香性,具有芳烴的性質。

    機械剝離法

    機械剝離法是利用物體與石墨烯之間的摩擦和相對運動,得到石墨烯薄層材料的方法。這種方法操作簡單,得到的石墨烯通常保持著完整的晶體結構。2004年,英國兩位科學使用透明膠帶對天然石墨進行層層剝離取得石墨烯的方法,也歸為機械剝離法,這種方法一度被認為生產效率低,無法工業化量產。雖然這種方法可以製備微米大小的石墨烯,但是其可控性較低,難以實現大規模合成。

    氧化還原法

    氧化還原法是通過使用硫酸、硝酸等化學試劑及高錳酸鉀、雙氧水等氧化劑將天然石墨氧化,增大石墨層之間的間距,在石墨層與層之間插入氧化物,製得氧化石墨(Graphite Oxide)。然後將反應物進行水洗,並對洗淨後的固體進行低溫乾燥,製得氧化石墨粉體。通過物理剝離、高溫膨脹等方法對氧化石墨粉體進行剝離,製得氧化石墨烯。最後通過化學法將氧化石墨烯還原,得到石墨烯(RGO)。這種方法操作簡單,產量高,但是產品質量較低。氧化還原法使用硫酸、硝酸等強酸,存在較大的危險性,又須使用大量的水進行清洗,帶大較大的環境污染。

    使用氧化還原法製備的石墨烯,含有較豐富的含氧官能團,易於改性。但由於在對氧化石墨烯進行還原時,較難控制還原後石墨烯的氧含量,同時氧化石墨烯在陽光照射、運輸時車廂內高溫等外界每件影響下會不斷的還原,因此氧化還原法生產的石墨烯逐批產品的品質往往不一致,難以控制品質。

    取向附生法

    單層石墨烯

    單層石墨烯(Graphene):指由一層以苯環結構(即六角形蜂巢結構)周期性緊密堆積的碳原子構成的一種二維碳材料。

    雙層石墨烯

    雙層石墨烯(Bilayer or double-layer graphene):指由兩層以苯環結構(即六角形蜂巢結構)周期性緊密堆積的碳原子以不同堆垛方式(包括AB堆垛,AA堆垛等)堆垛構成的一種二維碳材料。

    少層石墨烯

    少層石墨烯(Few-layer):指由3-10層以苯環結構(即六角形蜂巢結構)周期性緊密堆積的碳原子以不同堆垛方式(包括ABC堆垛,ABA堆垛等)堆垛構成的一種二維碳材料。

    隨著批量化生產以及大尺寸等難題的逐步突破,石墨烯的產業化套用步伐正在加快,基於已有的研究成果,最先實現商業化套用的領域可能會是移動設備、航空航天、新能源電池領域。

    基礎研究

    石墨烯對物理學基礎研究有著特殊意義,它使得一些此前只能在理論上進行論證的量子效應可以通過實驗經行驗證。在二維的石墨烯中,電子的質量仿佛是不存在的,這種性質使石墨烯成為了一種罕見的可用於研究相對論量子力學的凝聚態物質——因為無質量的粒子必須以光速運動,從而必須用相對論量子力學來描述,這為理論物理學家們提供了一個嶄新的研究方向:一些原來需要在巨型粒子加速器中進行的試驗,可以在小型實驗室內用石墨烯進行。

    零能隙的半導體主要是單層石墨烯,這種電子結構會嚴重影響到氣體分子在其表面上的作用。單層石墨烯較體相石墨表面反應活性增強的功能是由石墨烯的氫化反應和氧化反應結果顯示出來的,說明石墨烯的電子結構可以調變其表面的活性。另外,石墨烯的電子結構可以通過氣體分子吸附的誘導而發生相應的變化,其不但對載流子的濃度進行改變,同時可以摻雜不同的石墨烯。

    感測器

    石墨烯可以做成化學感測器,這個過程主要是通過石墨烯的表面吸附性能來完成的,根據部分學者的研究可知,石墨烯化學探測器的靈敏度可以與單分子檢測的極限相比擬。石墨烯獨特的二維結構使它對周圍的環境非常敏感。石墨烯是電化學生物感測器的理想材料,石墨烯製成的感測器在醫學上檢測多巴胺、葡萄糖等具有良好的靈敏性。

    石墨烯的研究與套用開發持續升溫,石墨和石墨烯有關的材料廣泛套用在電池電極材料、半導體器件、透明顯示屏、感測器、電容器、電晶體等方面。鑒於石墨烯材料優異的性能及其潛在的套用價值,在化學、材料、物理、生物、環境、能源等眾多學科領域已取得了一系列重要進展。研究者們致力於在不同領域嘗試不同方法以求製備高質量、大面積石墨烯材料。並通過對石墨烯製備工藝的不斷最佳化和改進,降低石墨烯製備成本使其優異的材料性能得到更廣泛的套用,並逐步走向產業化。

    中國在石墨烯研究上也具有獨特的優勢,從生產角度看,作為石墨烯生產原料的石墨,在我國儲能豐富,價格低廉。正是看到了石墨烯的套用前景,許多國家紛紛建立石墨烯相關技術研發中心,嘗試使用石墨烯商業化,進而在工業、技術和電子相關領域獲得潛在的套用專利。如歐盟委員會將石墨烯作為“未來新興旗艦技術項目”,設立專項研發計畫,未來10年內撥出10億歐元經費。英國政府也投資建立國家石墨烯研究所(NGI),力圖使這種材料在未來幾十年里可以從實驗室進入生產線和市場。

    石墨烯有望在諸多套用領域中成為新一代器件,為了探尋石墨烯更廣闊的套用領域,還需繼續尋求更為優異的石墨烯製備工藝,使其得到更好的套用。石墨烯雖然從合成和證實存在到今天只有短短十幾年的時間,但是已成為今年學者研究的熱點。其優異的光學、電學、力學、熱學性質促使研究人員不斷對其深入研究,隨著石墨烯的製備方法不斷被開發,石墨烯必將在不久的將來被更廣泛的套用到各領域中。

    石墨烯產業化還處於初期階段,一些套用還不足以體現出石墨烯的多種“理想”性能,而世界上很多科研人員正在探索“殺手鐧級”的套用,未來在檢測及認證方面需要面對太多挑戰,有待在手段及方法上不斷創新。

  2. 2016年4月11日 · 目前有關石墨烯的製備方法,國內外有較多的文獻綜述 [2],石墨烯的製備主要有物理方法和化學方法。 物理方法通常是以廉價的石墨或膨脹石墨為原料,通過微機械剝離法、液相或氣相直接剝離法來製備單層或多層石墨烯,此法原料易得,操作相對簡單,合成的石墨烯的純度高、缺陷較少,但費時、產率低下,不適於大規模生產。 目前實驗室用石墨烯主要多用化學方法來製備,該法最早以苯環或其它芳香體系為核,通過多步偶聯反應取代苯環或大芳香環上6個,循環往復,使芳香體系變大,得到一定尺寸的平面結構的石墨烯 (化學合成法) [3]。

  3. 2019年3月18日 · 石墨烯的生產 石墨烯的製備方法主要有四種:機械剝離法外延法化學氣相沉積法和氧化還原法。 機械剝離法 石墨烯的學術和商業應用,即機械剝離,是對海姆和諾沃塞洛夫首次生產石墨烯過程的改進。

  4. 石墨烯目前是世上最薄卻也是最堅硬的纳米材料 [6],它幾乎是完全透明的,只吸收2.3%的光 [7];導熱系數高達5,300 W/(m·K),高於奈米碳管和金刚石,常溫下其電子遷移率超過15,000 cm 2 /(V·s),又比纳米碳管或矽晶體(monocrystalline silicon)高,而電阻率

  5. 其他人也問了

  6. 可有效地插層於GO 層間. GO 在基材中的分散性。. 有的NH2 官能基,在原位聚合法中,可作為PAA(Polyamic acid, 聚亞醯胺前驅體) 聚合的起始平台,使GO 填充物與PI基材間形成共價鍵鍵結,提供一個很強的界面作用力, . 此能有效的改善GO/PI 複合材料之機械性質[2]。值得觀察的 ...

  7. 2012年4月20日 · 石墨烯的製備主要有物理方法和化學方法。 物理方法通常是以價廉的石墨或膨脹石墨為原料,透過微機械剝離法、液相或氣相直接剝離法來製備單層或多層石墨烯,此法原料易得,操作相對簡單,合成的石墨烯純度高、缺陷較少,但是整體製備時間冗長,產率也有限,因此不適於大規模生產。 2004 年英國曼徹斯特大學Geim的研究小組首次發表他們成功製備出的穩定石墨烯,推翻了“熱力學漲落不允許二維晶體在有限溫度下自由存在”長久以來的理論,因而帶動了石墨烯的研究熱潮。 常見的機械剝層法即是用透明膠帶黏貼石墨以反覆剝離出多餘的石墨片,將黏貼之產物在大量的水與丙酮中超音波清洗,去除大多數的較厚片層,即可得到寬度達微米尺寸的石墨烯,但產量低,很難於工業上大量使用。 微機械剝離法是最早用於製備石墨烯的物理方法。

  1. 石墨烯如何製備? 相關

    廣告
  2. 低溫來襲保暖要到位!TTRI檢測+6.53度,有感發熱不是隨口說,立即體驗黑科技,溫暖整個冬天! 彈性纖維貼身不緊繃,親膚絨毛保暖又舒心!獨家黑科技纖維面料,輕薄、耐穿,穿暖不必厚重!