Yahoo奇摩 網頁搜尋

  1. 台中小型辦公室 相關
    廣告
  1. National Security Bureau (Taiwan) - Wikipedia

    en.wikipedia.org › wiki › National_Security_Bureau_(Taiwan)

    National Security Bureau R.O.C 國家安全局 Guójiā Ānquán Jú ()kok-ka an-tsuân-pōo((Taiwanese Hokkien)Koet-kâ Ôn-chhiòn Khiu k ()Agency overview The National Security Bureau (NSB; Chinese: 國家安全局; pinyin: Guójiā Ānquán Jú; Pe h-ōe-jī: Kok-ka ...

  2. IKEA - Wikipedia

    en.wikipedia.org › wiki › IKEA

    IKEA ( Swedish: [ɪˈkêːa]) is a Swedish - origin Dutch (Netherlands) -headquartered multinational conglomerate that designs and sells ready-to-assemble furniture, kitchen appliances and home accessories, among other goods and home services. ...

    • 28 July 1943; 78 years ago in Sweden
    • Retail
  3. Robot - Wikipedia

    en.wikipedia.org › wiki › Robot

    Machine capable of carrying out a complex series of actions automatically. This article is about mechanical robots. For software agents, see Bot. For other uses of the term, see Robot (disambiguation). ASIMO (2000) at the Expo 2005. Articulated ...

  4. Capacitor - Wikipedia

    en.wikipedia.org › wiki › Capacitor

    A capacitor is a device that stores electrical energy in an electric field.It is a passive electronic component with two terminals.The effect of a capacitor is known as capacitance.While some capacitance exists between any two electrical ...

  5. Ferrari - Wikipedia

    en.wikipedia.org › wiki › Ferrari

    Ferrari S.p.A. (/ f ə ˈ r ɑːr i /; Italian: [ferˈraːri]) is an Italian luxury sports car manufacturer based in Maranello, Italy.Founded by Enzo Ferrari in 1939 out of the Alfa Romeo race division as Auto Avio Costruzioni, the company built its ...

  6. The Walt Disney Company - Wikipedia

    en.wikipedia.org › wiki › The_Walt_Disney_Company

    Walt Disney World received much of the company's attention through the 1970s and into the 1980s. In 1978, Disney executives announced plans for the second Walt Disney World theme park, EPCOT Center, which would open in October 1982.Inspired ...

  7. Transformer - Wikipedia

    en.wikipedia.org › wiki › Transformer
    • Principles
    • Construction
    • Classification Parameters
    • Applications
    • History
    • Bibliography

    Ideal transformer

    An ideal transformer is a theoretical linear transformer that is lossless and perfectly coupled. Perfect coupling implies infinitely high core magnetic permeability and winding inductances and zero net magnetomotive force (i.e. ipnp - isns = 0).[c] A varying current in the transformer's primary winding attempts to create a varying magnetic flux in the transformer core, which is also encircled by the secondary winding. This varying flux at the secondary winding induces a varying electromotive...

    Transformer EMF equation

    If the flux in the core is purely sinusoidal, the relationship for either winding between its rms voltage Erms of the winding, and the supply frequency f, number of turns N, core cross-sectional area a in m2 and peak magnetic flux density Bpeak in Wb/m2or T (tesla) is given by the universal EMF equation: 1. E rms = 2 π f N a B peak 2 ≈ 4.44 f N a B peak {\\displaystyle E_{\\text{rms}}={\\frac {2\\pi fNaB_{\\text{peak}}}{\\sqrt {2}}}\\approx 4.44fNaB_{\\text{peak}}}

    Polarity

    A dot convention is often used in transformer circuit diagrams, nameplates or terminal markings to define the relative polarity of transformer windings. Positively increasing instantaneous current entering the primary winding's ‘dot’ end induces positive polarity voltage exiting the secondary winding's ‘dot’ end. Three-phase transformers used in electric power systems will have a nameplate that indicate the phase relationships between their terminals. This may be in the form of a phasordiagra...

    Cores

    Core form = core type; shell form = shell type Closed-core transformers are constructed in 'core form' or 'shell form'. When windings surround the core, the transformer is core form; when windings are surrounded by the core, the transformer is shell form. Shell form design may be more prevalent than core form design for distribution transformer applications due to the relative ease in stacking the core around winding coils. Core form design tends to, as a general rule, be more economical, and...

    Windings

    The electrical conductor used for the windings depends upon the application, but in all cases the individual turns must be electrically insulated from each other to ensure that the current travels throughout every turn. For small transformers, in which currents are low and the potential difference between adjacent turns is small, the coils are often wound from enamelled magnet wire. Larger power transformers may be wound with copper rectangular strip conductors insulated by oil-impregnated pa...

    Cooling

    It is a rule of thumb that the life expectancy of electrical insulation is halved for about every 7 °C to 10 °C increase in operating temperature (an instance of the application of the Arrhenius equation). Small dry-type and liquid-immersed transformers are often self-cooled by natural convection and radiation heat dissipation. As power ratings increase, transformers are often cooled by forced-air cooling, forced-oil cooling, water-cooling, or combinations of these. Large transformers are fil...

    Transformers can be classified in many ways, such as the following: 1. Power rating: From a fraction of a volt-ampere (VA) to over a thousand MVA. 2. Duty of a transformer: Continuous, short-time, intermittent, periodic, varying. 3. Frequency range: Power-frequency, audio-frequency, or radio-frequency. 4. Voltage class: From a few volts to hundreds of kilovolts. 5. Cooling type: Dry or liquid-immersed; self-cooled, forced air-cooled;forced oil-cooled, water-cooled. 6. Application: power supply, impedance matching, output voltage and current stabilizer, pulse, circuit isolation, power distribution, rectifier, arc furnace, amplifier output, etc.. 7. Basic magnetic form: Core form, shell form, concentric, sandwich. 8. Constant-potential transformer descriptor: Step-up, step-down, isolation. 9. General winding configuration: By IEC vector group, two-winding combinations of the phase designations delta, wye or star, and zigzag; autotransformer, Scott-T 10. Rectifier phase-shift winding c...

    Various specific electrical application designs require a variety of transformer types. Although they all share the basic characteristic transformer principles, they are customized in construction or electrical properties for certain installation requirements or circuit conditions. In electric power transmission, transformers allow transmission of electric power at high voltages, which reduces the loss due to heating of the wires. This allows generating plants to be located economically at a distance from electrical consumers.All but a tiny fraction of the world's electrical power has passed through a series of transformers by the time it reaches the consumer. In many electronic devices, a transformer is used to convert voltage from the distribution wiring to convenient values for the circuit requirements, either directly at the power line frequency or through a switch mode power supply. Signal and audio transformers are used to couple stages of amplifiers and to match devices such...

    Discovery of induction

    Electromagnetic induction, the principle of the operation of the transformer, was discovered independently by Michael Faraday in 1831 and Joseph Henry in 1832. Only Faraday furthered his experiments to the point of working out the equation describing the relationship between EMF and magnetic flux now known as Faraday's law of induction: 1. | E | = | d Φ B d t | , {\\displaystyle |{\\mathcal {E}}|=\\left|{{\\mathrm {d} \\Phi _{\\text{B}}} \\over \\mathrm {d} t}\\right|,} where | E | {\\displaystyle |{\\m...

    Induction coils

    The first type of transformer to see wide use was the induction coil, invented by Rev. Nicholas Callan of Maynooth College, Ireland in 1836. He was one of the first researchers to realize the more turns the secondary winding has in relation to the primary winding, the larger the induced secondary EMF will be. Induction coils evolved from scientists' and inventors' efforts to get higher voltages from batteries. Since batteries produce direct current (DC) rather than AC, induction coils relied...

    First alternating current transformers

    By the 1870s, efficient generators producing alternating current (AC) were available, and it was found AC could power an induction coil directly, without an interrupter. In 1876, Russian engineer Pavel Yablochkov invented a lighting system based on a set of induction coils where the primary windings were connected to a source of AC. The secondary windings could be connected to several 'electric candles'(arc lamps) of his own design. The coils Yablochkov employed functioned essentially as tran...

    Beeman, Donald, ed. (1955). Industrial Power Systems Handbook. McGraw-Hill.
    Calvert, James (2001). "Inside Transformers". University of Denver. Archived from the original on May 9, 2007. Retrieved May 19, 2007.
    Coltman, J. W. (Jan 1988). "The Transformer". Scientific American. 258 (1): 86–95. Bibcode:1988SciAm.258a..86C. doi:10.1038/scientificamerican0188-86. OSTI 6851152.
    Coltman, J.W. (Jan–Feb 2002). "The Transformer [Historical Overview]". IEEE Industry Applications Magazine. 8 (1): 8–15. doi:10.1109/2943.974352. S2CID 18160717.
  8. Electric generator - Wikipedia

    en.wikipedia.org › wiki › Electric_generator
    • Terminology
    • History
    • Specialized Types of Generator
    • Common Use Cases
    • Equivalent Circuit

    Electromagneticgenerators fall into one of two broad categories, dynamos and alternators. 1. Dynamos generate pulsing direct current through the use of a commutator. 2. Alternators generate alternating current. Mechanically a generator consists of a rotating part and a stationary part: 1. Rotor: The rotating part of an electrical machine. 2. Stator: The stationary part of an electrical machine, which surrounds the rotor. One of these parts generates a magnetic field, the other has a wire winding in which the changing field induces an electric current: 1. Field winding or field (permanent) magnets: The magnetic field-producing component of an electrical machine. The magnetic field of the dynamo or alternator can be provided by either wire windings called field coils or permanent magnets. Electrically-excited generators include an excitation system to produce the field flux. A generator using permanent magnets (PMs) is sometimes called a magneto, or a permanent magnet synchronous gene...

    Before the connection between magnetism and electricity was discovered, electrostatic generators were invented. They operated on electrostatic principles, by using moving electrically charged belts, plates, and disks that carried charge to a high potential electrode. The charge was generated using either of two mechanisms: electrostatic induction or the triboelectric effect. Such generators generated very high voltage and low current. Because of their inefficiency and the difficulty of insulating machines that produced very high voltages, electrostatic generators had low power ratings, and were never used for generation of commercially significant quantities of electric power. Their only practical applications were to power early X-ray tubes, and later in some atomic particle accelerators.

    Direct current

    A dynamo uses commutators to produce direct current. It is self-excited, i.e. its field electromagnets are powered by the machine's own output. Other types of DC generators use a separate source of direct current to energize their field magnets.

    Power station

    A power station, also referred to as a power plant or powerhouse and sometimes generating station or generating plant, is an industrial facility for the generation of electric power. Most power stations contain one or more generators, a rotating machine that converts mechanical power into three-phase electric power. The relative motion between a magnetic field and a conductor creates an electrical current. The energy source harnessed to turn the generator varies widely. Most power stations in...

    Genset

    An engine-generator is the combination of an electrical generator and an engine (prime mover) mounted together to form a single piece of self-contained equipment. The engines used are usually piston engines, but gas turbines can also be used, and there are even hybrid diesel-gas units, called dual-fuel units. Many different versions of engine-generators are available - ranging from very small portable petrolpowered sets to large turbine installations. The primary advantage of engine-generator...

    Human powered electrical generators

    A generator can also be driven by human muscle power (for instance, in field radio station equipment). Human powered electric generators are commercially available, and have been the project of some DIY enthusiasts. Typically operated by means of pedal power, a converted bicycle trainer, or a foot pump, such generators can be practically used to charge batteries, and in some cases are designed with an integral inverter. An average "healthy human" can produce a steady 75 watts (0.1 horsepower)...

    An equivalent circuit of a generator and load is shown in the adjacent diagram. The generator is represented by an abstract generator consisting of an ideal voltage source and an internal impedance. The generator's V G {\\displaystyle V_{\\text{G}}} and R G {\\displaystyle R_{\\text{G}}} parameters can be determined by measuring the winding resistance (corrected to operating temperature), and measuring the open-circuit and loaded voltage for a defined current load. This is the simplest model of a generator, further elements may need to be added for an accurate representation. In particular, inductance can be added to allow for the machine's windings and magnetic leakage flux,but a full representation can become much more complex than this.

  9. Light-emitting diode - Wikipedia

    en.wikipedia.org › wiki › Light-emitting_diode

    Working principle Electroluminescence Invented H. J. Round (1907) Oleg Losev (1927) James R. Biard (1961) Nick Holonyak (1962) First production October 1962 Pin configuration A light-emitting diode (LED) is a semiconductor light source that ...

  10. BenQ - Wikipedia

    en.wikipedia.org › wiki › BenQ
    • BenQ-Siemens
    • After Siemens
    • Corporate Restructuring
    • Acquiring Zowie Gear

    On 1 October 2005, BenQ Corp. acquired the mobile devices division of Germany's Siemens AG, becoming the sixth-largest company in the mobile phone industry by accumulated market share. The acquisition results in a new business group, BenQ Mobile, of BenQ Corporation entirely dedicated to wireless communications. Mobile phones of the new group are marketed under a new brand, BenQ-Siemens. In late September 2006, the mobile devices division of BenQ, BenQ Mobile (Germany), announced bankruptcy when BenQ Corp. discontinued its funding. As a result, BenQ Mobile was placed under the supervision of a state-appointed bankruptcy administrator. In February 2007, BenQ Mobile was finally disbanded as a suitable buyer could not be found. An estimated 2000 BenQ Mobile employees lost their jobs.On 24 August 2006 BenQ announced plans to spin off its manufacturing operations in early 2007, separating contract manufacturing and own-brand divisions.

    After BenQ-Siemens, BenQ continued to make phones, primarily aimed at the Asian market (although one was released in Europe too). This is a list of BenQ phones during the post-BenQ-Siemens brands period between 2009-2012: 1. BenQ T33 2. BenQ T51 3. BenQ C30 (BenQ-Siemens C31) 4. BenQ E72 (Windows Mobilesmartphone. Also released in Europe) (Not a E71 Successors) 5. BenQ M7 (BenQ-Siemens M81 spirituality success's) 6. BenQ T60 7. BenQ E53 8. BenQ C36 (BenQ-Siemens C31 Successors) 9. BenQ E55 10. BenQ MOMODESIGN MD300H (HSDPA) (this is a co-brands in exclusively project of gadgets for MOMODESIGN, the most rarest model of BenQ Mobile because the phone was made available in limited quantities volumes not over 5,000 units.) After a hiatus, BenQ resumed production of smartphones under its own brand in 2013.

    On 24 August 2006, BenQ announced plans to spin off its manufacturing operations in early 2007, separating contract manufacturing and own-brand divisions. In April 2007, considering that the branded business has achieved sufficient profit and scale to sustain and grow its operation independently, BenQ announced the plan to spin off its branded business. After the spin-off, BenQ Corporation was renamed Qisda Corporation, which will focus on integrated manufacturing service business, and the spun-off company has succeeded the name of BenQ Corporation, which is a 100% owned subsidiary of Qisda Corp. On 3 September 2007, the newly spun-off BenQ Corporation commenced its new operation to continue selling and marketing products under the BenQ brand name.

    On 10 December 2015, BenQ announced that ZOWIE GEAR would become their new gaming division.Their newer products include mice, mouse pads, sound cards, monitors, and other gaming accessories.

  1. 台中小型辦公室 相關
    廣告