Yahoo奇摩 網頁搜尋

  1. 電動板車 相關
    廣告
  1. Aurora - Wikipedia

    en.wikipedia.org/wiki/Aurora
    • Etymology
    • Occurrence
    • Causes
    • Interaction of The Solar Wind with Earth
    • Auroral Particle Acceleration
    • Auroral Events of Historical Significance
    • Historical Theories, Superstition and Mythology
    • Non-Terrestrial Auroras
    • See Also
    • Further Reading

    The word "aurora" is derived from the name of the Roman goddess of the dawn, Aurora, who travelled from east to west announcing the coming of the sun. Ancient Greek poets used the name metaphorically to refer to dawn, often mentioning its play of colours across the otherwise dark sky (e.g., "rosy-fingered dawn").

    Most auroras occur in a band known as the "auroral zone", which is typically 3° to 6° wide in latitude and between 10° and 20° from the geomagnetic poles at all local times (or longitudes), most clearly seen at night against a dark sky. A region that currently displays an aurora is called the "auroral oval", a band displaced by the solar wind towards the night side of the Earth. Early evidence for a geomagnetic connection comes from the statistics of auroral observations. Elias Loomis (1860), and later Hermann Fritz (1881) and Sophus Tromholt (1881)in more detail, established that the aurora appeared mainly in the auroral zone. Day-to-day positions of the auroral ovals are posted on the Internet. In northern latitudes, the effect is known as the aurora borealis or the northern lights. The former term was coined by Galileo in 1619, from the Roman goddess of the dawn and the Greek name for the north wind. The southern counterpart, the aurora australis or the southern lights, has featu...

    A full understanding of the physical processes which lead to different types of auroras is still incomplete, but the basic cause involves the interaction of the solar wind with the Earth's magnetosphere. The varying intensity of the solar wind produces effects of different magnitudes but includes one or more of the following physical scenarios. 1. A quiescent solar wind flowing past the Earth's magnetosphere steadily interacts with it and can both inject solar wind particles directly onto the geomagnetic field lines that are 'open', as opposed to being 'closed' in the opposite hemisphere, and provide diffusion through the bow shock. It can also cause particles already trapped in the radiation belts to precipitate into the atmosphere. Once particles are lost to the atmosphere from the radiation belts, under quiet conditions, new ones replace them only slowly, and the loss-cone becomes depleted. In the magnetotail, however, particle trajectories seem constantly to reshuffle, probably...

    The Earth is constantly immersed in the solar wind, a rarefied flow of magnetized hot plasma (a gas of free electrons and positive ions) emitted by the Sun in all directions, a result of the two-million-degree temperature of the Sun's outermost layer, the corona. The quiescent solar wind reaches Earth with a velocity typically around 400 km/s, a density of around 5 ions/cm3 and a magnetic field intensity of around 2–5 nT (for comparison, Earth's surface field is typically 30,000–50,000 nT). During magnetic storms, in particular, flows can be several times faster; the interplanetary magnetic field (IMF) may also be much stronger. Joan Feynman deduced in the 1970s that the long-term averages of solar wind speed correlated with geomagnetic activity. Her work resulted from data collected by the Explorer 33 spacecraft.The solar wind and magnetosphere consist of plasma (ionized gas), which conducts electricity. It is well known (since Michael Faraday's work around 1830) that when an elect...

    The electrons responsible for the brightest forms of the aurora are well accounted for by their acceleration in the dynamic electric fields of plasma turbulence encountered during precipitation from the magnetosphere into the auroral atmosphere. In contrast, static electric fields are unable to transfer energy to the electrons due to their conservative nature.The electrons and ions that cause the diffuse aurora appear not to be accelerated during precipitation.The increase in strength of magnetic field lines towards the Earth creates a 'magnetic mirror' that turns back many of the downward flowing electrons. The bright forms of auroras are produced when downward acceleration not only increases the energy of precipitating electrons but also reduces their pitch angles (angle between electron velocity and the local magnetic field vector). This greatly increases the rate of deposition of energy into the atmosphere, and thereby the rates of ionization, excitation and consequent emission...

    The discovery of a 1770 Japanese diary in 2017 depicting auroras above the ancient Japanese capital of Kyoto suggested that the storm may have been 7% larger than the Carrington event, which affected telegraph networks. The auroras that resulted from the "great geomagnetic storm" on both 28 August and 2 September 1859, however, are thought to be the most spectacular in recent recorded history. In a paper to the Royal Society on 21 November 1861, Balfour Stewart described both auroral events as documented by a self-recording magnetograph at the Kew Observatory and established the connection between the 2 September 1859 auroral storm and the Carrington-Hodgson flare event when he observed that "It is not impossible to suppose that in this case our luminary was taken in the act." The second auroral event, which occurred on 2 September 1859, as a result of the exceptionally intense Carrington-Hodgson white light solar flare on 1 September 1859, produced auroras, so widespread and extrao...

    An aurora was described by the Greek explorer Pytheas in the 4th century BC. Seneca wrote about auroras in the first book of his Naturales Quaestiones, classifying them, for instance as pithaei ('barrel-like'); chasmata ('chasm'); pogoniae ('bearded'); cyparissae ('like cypress trees'), and describing their manifold colors. He wrote about whether they were above or below the clouds, and recalled that under Tiberius, an aurora formed above the port city of Ostia that was so intense and red that a cohort of the army, stationed nearby for fire duty, galloped to the rescue. It has been suggested that Pliny the Elder depicted the aurora borealis in his Natural History, when he refers to trabes, chasma, 'falling red flames' and 'daylight in the night'. The history of China has rich, and possibly the oldest, records of the aurora borealis. On an autumn around 2000 BC, according to a legend, a young woman named Fubao was sitting alone in the wilderness by a bay, when suddenly a "magical ban...

    Both Jupiter and Saturn have magnetic fields that are stronger than Earth's (Jupiter's equatorial field strength is 4.3 Gauss, compared to 0.3 Gauss for Earth), and both have extensive radiation belts. Auroras have been observed on both gas planets, most clearly using the Hubble Space Telescope, and the Cassini and Galileo spacecraft, as well as on Uranus and Neptune. The aurorae on Saturn seem, like Earth's, to be powered by the solar wind. However, Jupiter's aurorae are more complex. The Jupiter's main auroral oval is associated with the plasma produced by the volcanic moon, Io and the transport of this plasma within the planet's magnetosphere. An uncertain fraction of Jupiter's aurorae are powered by the solar wind. In addition, the moons, especially Io, are also powerful sources of aurora. These arise from electric currents along field lines ("field aligned currents"), generated by a dynamo mechanism due to the relative motion between the rotating planet and the moving moon. Io,...

    Stern, David P. (1996). "A Brief History of Magnetospheric Physics During the Space Age". Reviews of Geophysics. 34 (1): 1–31. Bibcode:1996RvGeo..34....1S. doi:10.1029/95rg03508.
    Stern, David P.; Peredo, Mauricio. "The Exploration of the Earth's Magnetosphere". phy6.org.
    Eather, Robert H. (1980). Majestic Lights: The Aurora in Science, History, and The Arts. Washington, DC: American Geophysical Union. ISBN 978-0-87590-215-9.
    Akasofu, Syun-Ichi (April 2002). "Secrets of the Aurora Borealis". Alaska Geographic Series. 29(1).
  2. 其他人也搜尋了
  1. 電動板車 相關
    廣告