Yahoo奇摩 網頁搜尋

搜尋結果

  1. 靈敏度 和 特異度 (英語: Sensitivity and specificity ),或稱 敏感性 和 特異性 [1] ,是從數學角度描述某種病症檢定的準確性,在醫學中廣為使用。 靈敏度 ( Sensitivity ,也稱為真陽性率、 召回率(Recall) [2] )是指實際為陽性的樣本中,判斷為陽性的比例(例如真正有生病的人中,被判斷為有生病者的比例),計算方式是真陽性除以真陽性+假陰性(實際為陽性,但判斷為陰性)的比值 [3] 。 特異度 ( Specificity ,也稱為真陰性率)是指實際為陰性的樣本中,判斷為陰性的比例(例如真正未生病的人中,被醫院判斷為未生病者的比例),計算方式是真陰性除以真陰性+假陽性(實際為陰性,但判斷為陽性)的比值 [3] 。

  2. 電子視覺化顯示器. 電子視覺化顯示器 (英語: Electronic visual display ),是一種顯示技術,讓電子訊號可以被 視覺 化,在如 平板顯示器 等 顯示器 上輸出。. 常見的電子視覺化顯示器包括 電視 與 電腦顯示器 等。.

  3. 2024年3月8日 · 一般來說,當一段去氧核醣核酸序列之mRNA為轉譯成蛋白質的RNA序列時,稱為「正義」(sense),而相對並互補的另一股序列,則稱為「反義」(anti-sense)。由於RNA聚合酵素的作用方式,是根據模板上的訊息來合成一段與模板互補的RNA片段,因此正義mRNA的序列實際上與去氧核醣核酸上的正義股相同。

  4. 以下網站未經原作者同意,亦未有遵守維基百科授權條款,直接複製維基百科的內容到他們的網站上,尤其是百度百科最為嚴重。而中國大陸其他百科平台大多數皆全盤抄襲百度百科,實質上就是變相抄襲維基百科。 為避免日後因為被外人反客為主地造成他人誤解維基百科抄襲該等百科網站,因此 ...

    • 電路符號
    • 金氧半場效電晶體的操作原理
    • 金氧半場效電晶體在電子電路上應用的優勢
    • 金氧半場效電晶體的尺寸縮放
    • 金氧半場效電晶體的閘極材料
    • 各種常見的金氧半場效電晶體技術
    • 以金氧半場效電晶體實現類比開關
    • 外部連結

    常用於金氧半場效電晶體的電路符號有多種形式,最常見的設計是以一條垂直線代表通道(Channel),兩條和通道平行的接線代表源極(Source)與汲極(Drain),左方和通道垂直的接線代表閘極(Gate),如下圖所示。有時也會將代表通道的直線以虛線代替,以區分增强型(enhancement mode,又稱增强式)金氧半場效電晶體或是耗尽型(depletion mode,又稱空乏式)金氧半場效電晶體。 由於集成電路晶片上的金氧半場效電晶體為四端元件,所以除了源極(S)、汲極(D)、閘極(G)外,尚有一基極(Bulk或是Body)。金氧半場效電晶體電路符號中,從通道往右延伸的箭號方向則可表示此元件為n型或是p型的金氧半場效電晶體。箭頭方向永遠從P端指向N端,所以箭頭從通道指向基極端的為p型的金氧...

    金氧半場效電晶體的核心

    金氧半場效電晶體在結構上以一個金屬—氧化物層—半導體的電容為核心(現在的金氧半場效電晶體多半以多晶矽取代金屬作為其閘極材料),氧化層的材料多半是二氧化矽,其下是作為基極的矽,而其上則是作為閘極的多晶矽。這樣的結構正好等於一個電容器,氧化層為電容器中介電質,而電容值由氧化層的厚度與二氧化矽的介電係數來決定。閘極多晶矽與基極的矽則成為MOS電容的兩個端點。 當一個電壓施加在MOS電容的兩端時,半導體的電荷分佈也會跟著改變。

    金氧半場效電晶體的結構

    左圖是一個n-type金氧半場效電晶體(以下簡稱NMOS)的截面圖。如前所述,金氧半場效電晶體的核心是位於中央的MOS電容,而左右兩側則是它的源極與汲極。源極與汲極的特性必須同為n-type(即NMOS)或是同為p-type(即PMOS)。左圖NMOS的源極與汲極上標示的「N+」代表著兩個意義:(1)N代表摻雜(doped)在源極與汲極區域的雜質極性為N;(2)「+」代表這個區域為高摻雜濃度區域(heavily doped region),也就是此區的電子濃度遠高於其他區域。在源極與汲極之間被一個極性相反的區域隔開,也就是所謂的基極(或稱基體)區域。如果是NMOS,那麼其基體區的摻雜就是p-type。反之對PMOS而言,基體應該是n-type,而源極與汲極則為p-type(而且是重摻雜的P+)。基體的摻雜濃度不需要如源極或汲極那麼高,故在左圖中沒有「+」,作為通道用。 對這個NMOS而言,真正用來作為通道、讓載子通過的只有MOS電容正下方半導體的表面區域。當一個正電壓施加在閘極上,帶負電的電子就會被吸引至表面,形成通道,讓n-type半導體的多數載子—電子可以從源極流向汲極。如果...

    金氧半場效電晶體的操作模式

    依照在金氧半場效電晶體的閘極、源極,與汲極等三個端點施加的偏置(bias)不同,金氧半場效電晶體將有下列三種操作模式。下面将以一种简化代数模型来讨论。现代MOS管的特性比这里展示的代数模型更加复杂。 对于增强型N沟道MOS管来说,这3种工作模式分别为: 截止區(次臨界區或弱反轉區)(cutoff, subthreshold or weak-inversion mode) 1. 當 |VGS| < |Vth| 时: 2. |VGS| 代表閘極到源極的偏壓差,|Vth| 为材料的臨界電壓。這個金氧半場效電晶體是處在截止(cut-off)的狀態,通道無法反轉,並沒有足夠的多數載子,電流無法流過這個金氧半場效電晶體,也就是這個金氧半場效電晶體不導通。 1. 但事實上,金氧半場效電晶體無電流通過的敘述和現實有些微小的差異。在真實的狀況下,因為載子的能量依循麦克斯韦-玻尔兹曼分布而有高低的差異。雖然金氧半場效電晶體的通道沒有形成,但仍然有些具有較高能量的載子可以從半導體表面流至汲極。而若是 |VGS| 略大於零,但小於 |Vth| 的情況下,還會有一個稱為弱反轉層(weak inversio...

    金氧半場效電晶體在1960年由貝爾實驗室的D. Kahng(英语:Dawon Kahng)和Martin Atalla(英语:Martin Atalla)首次實作成功,這種元件的操作原理和1947年蕭克利等人發明的雙載子接面電晶體截然不同,且因為製造成本低廉與使用面積較小、高整合度的優勢,在大型積體電路或是超大型積體電路的領域裡,重要性遠超過BJT。 近年來由於金氧半場效電晶體元件的性能逐漸提升,除了傳統上應用於諸如微處理器、微控制器等數位訊號處理的場合上,也有越來越多類比訊號處理的積體電路可以用金氧半場效電晶體來實現,以下分別介紹這些應用。

    過去數十年來,金氧半場效電晶體的尺寸不斷地變小。早期的積體電路金氧半場效電晶體製程裡,通道長度約在幾個微米的等級。但是到了今日的積體電路製程,這個參數已經縮小到了幾十分之一甚至一百分之一。2008年初,Intel開始以45奈米的技術來製造新一代的微處理器,實際的元件通道長度可能比這個數字還小一些。至90年代末,金氧半場效電晶體尺寸不斷縮小,讓積體電路的效能大大提升,而從歷史的角度來看,這些技術上的突破和半導體製程的進步有著密不可分的關係。

    理論上金氧半場效電晶體的閘極應該儘可能選擇電性良好的導體,多晶矽在經過重摻雜之後的導電性可以用在金氧半場效電晶體的閘極上,但是並非完美的選擇。目前金氧半場效電晶體使用多晶矽作為的理由如下: 1. 金氧半場效電晶體的臨界電壓(threshold voltage)主要由閘極與通道材料的功函數之間的差異來決定,而因為多晶矽本質上是半導體,所以可以藉由摻雜不同極性的雜質來改變其功函數。更重要的是,因為多晶矽和底下作為通道的矽之間能隙相同,因此在降低PMOS或是NMOS的臨界電壓時可以藉由直接調整多晶矽的功函數來達成需求。反過來說,金屬材料的功函數並不像半導體那麼易於改變,如此一來要降低金氧半場效電晶體的臨界電壓就變得比較困難。而且如果想要同時降低PMOS和NMOS的臨界電壓,將需要兩種不同的金屬分別...

    雙閘極金氧半場效電晶體

    雙閘極(dual-gate)金氧半場效電晶體通常用在射頻積體電路中,這種金氧半場效電晶體的兩個閘極都可以控制電流大小。在射頻電路的應用上,雙閘極金氧半場效電晶體的第二個閘極大多數用來做增益、混頻器或是頻率轉換的控制。

    空乏式MOSFETS

    一般而言,空乏式(depletion mode)金氧半場效電晶體比前述的加強式(enhancement mode)金氧半場效電晶體少見。空乏式金氧半場效電晶體在製造過程中改變摻雜到通道的雜質濃度,使得這種金氧半場效電晶體的閘極就算沒有加電壓,通道仍然存在。如果想要關閉通道,則必須在閘極施加負電壓(對NMOS而言)。空乏式金氧半場效電晶體是屬於「常閉型」(normally-closed,ON)的開關,而相對的,加強式金氧半場效電晶體則屬於「常斷型」(normally-open,OFF)的開關。

    NMOS邏輯

    同樣驅動能力的NMOS通常比PMOS所佔用的面積小,因此如果只在邏輯閘的設計上使用NMOS的話也能縮小晶片面積。不過NMOS邏輯雖然佔的面積小,卻無法像CMOS邏輯一樣做到不消耗靜態功率,因此在1980年代中期後已經漸漸退出市場,目前以CMOS為主流。

    金氧半場效電晶體在導通時的通道電阻低,而截止時的電阻近乎無限大,所以適合作為類比訊號的開關(訊號的能量不會因為開關的電阻而損失太多)。金氧半場效電晶體作為開關時,其源極與汲極的分別和其他的應用是不太相同的,因為訊號可以從金氧半場效電晶體閘極以外的任一端進出。對NMOS開關而言,電壓最負的一端就是源極,PMOS則正好相反,電壓最正的一端是源極。金氧半場效電晶體開關能傳輸的訊號會受到其閘極—源極、閘極—汲極,以及汲極到源極的電壓限制,如果超過了電壓的上限可能會導致金氧半場效電晶體燒毀。 金氧半場效電晶體開關的應用範圍很廣,舉凡需要用到取樣保持電路(sample-and-hold circuits)或是截波電路(chopper circuits)的設計,例如類比數位轉換器(A/D converte...

    Lessons In Electric Circuits—INSULATED-GATE FIELD-EFFECT TRANSISTORS (页面存档备份,存于互联网档案馆)
    MOSFET models (页面存档备份,存于互联网档案馆) Diagrams and mathematical derivation.
    MIT Open Courseware 6.012 -- 麻省理工學院開放式課程計畫(微電子學與MOSFET元件)
    MIT Open Courseware 6.002 – Spring 2007. [2020-06-11]. (原始内容存档于2010-05-05).
  5. 電腦效能(Computer Performance)一般會以電腦系統在指定時間和使用資源的條件下,所完成工作的數量來表示。 依上下文的不同,電腦效能的「良好」可能包括以下項目中的一項或幾項: 快速的反應時間 高吞吐量(處理工作的速度) 資源的使用率。 電腦系統或應用程式的高可用性

  6. 此條目需要補充更多來源。 (2024年2月)請協助補充多方面可靠來源以改善這篇條目,無法查證的內容可能會因為異議提出而被移除。 致使用者:請搜尋一下條目的標題(來源搜尋: "盧昱曉" — 網頁、新聞、書籍、學術、圖像 ),以檢查網路上是否存在該主題的更多可靠來源(判定指引)。